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Introduction

Calculation of peptide segments and protein local structures
is an essential problem in protein structure prediction and
protein modelling. For a peptide segment that is very short
or is strictly limited by its surrounding protein environment,
normal energy minimisation is sufficient to pick out a rea-
sonable structure. However when dealing with the flexible
loops, more powerful computational methods are needed to
search the vast conformational space and identify the na-
tive-like conformations among the numerous candidates. In
recent years, some methods based on Monte-Carlo Simu-

lated Annealing (MCSA)[1-4], the multiple copy sampling
method[5] and scaling-relaxation [6] have been developed
to overcome this problem.

However, due to the huge amount of computation, all
these current methods could not achieve sufficient both on
accuracy and speed. In our previous study [7], we devised a
very efficient MCSA-based package to screen out the lower
energy candidates in the conformational space of a protein
loop. This high efficiency is due to our grid mapping algo-
rithm and a simplified energy function. After the conforma-
tion sampling, a standard CHARMm [8] run continues to
pick out the final native-like conformation by a couple of
cycles of energy minimisation, which compensate some in-
accuracy resulting from the simplified energy function.

In this paper, we make some significant improvements
on the algorithm, test the program on more extensive exam-
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ples, and also solve the problems which remained previ-
ously. For the MCSA-based method, one concern is to determine
the number of simulations necessary to cover the most con-
formational space. The current work will address this point
rather than using an arbitrary value such as 100 times as be-
fore. On the other hand, since the coarse energy function and
completely random generation method for loop conforma-
tion often introduced some unfavourable backbone torsion
angles previously, we modify the simulation algorithm here
in order to reduce the probability of unreasonable conforma-
tions significantly.

Algorithm

The main framework of the current program is inherited from
our previous work, which mainly consists of three parts: simu-
lation system, force field and grid-mapping method. The prin-
ciples and the new enhancements of these methods are illus-
trated below.

Features derived from our previous work [7,8]

Simulation The first step is to set up the initial configura-
tion of the simulation system (see Figure 1). All atom coor-
dinates of the protein except those of the modelled loop are
taken from the Protein Data Bank (PDB)[9] and fixed during
the simulation (see Figure 1a). The target loop is built up in
an extended conformation in the beginning, with the stand-
ard bond lengths and bond angles adopted in CHARMm. Then
the loop is attached by its N-terminus to the protein frame-
work (see Figure 1b), and two dummy atoms N’ and CA’ are
generated at the end of the loop. These two dummy atoms
are useful for calculation of the harmonic energy, which en-
sures the smooth closure between the loop and the protein
framework in simulation.

The second step is the standard MCSA-simulation, which
is composed of two items, iterative generation of random
conformations and candidate selection at given temperatures
decreasing from the molten state to absolute zero degree with
a certain step. During the loop simulation, all the bond lengths
and bond angles of the loop are fixed at the initial values, ω
dihedrals of the backbone are kept to be 180°, and φ dihe-
drals of prolines are fixed at –75°. The new conformations
are produced by changing one of the φ, ψ dihedrals of back-
bone or one of the four χ dihedrals of the side chain at a
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Figure 1 Generation of the initial loop conformation (a)
The situation of the calculated loop; (b) The method used in
previous work, which does not split the loop and only at-

taches it to the protein framework with pseudo atoms directly.
(c) The method adopted in this work with a split in the middle
and connection by pseudo atoms.



J. Mol. Model. 2000, 6 3

random degree every time. The acceptance of the new con-
formation is dependent upon conformity with the classical
Metropolis criterion.

The final step is to rank the conformation by the classical
CHARMm force field. Since the energy function in the simu-
lation is partially coarse (see next part), it will inevitably
introduce some unsuitable interactions and unfavourable con-
formations into the results and the energy of candidates also
will not be precise enough. Therefore, all the candidates are
minimised by 200 steps of steepest descent (SD), conjugate
gradient (CONJ) and adopted basis Newton-Raphson (ABNR)
method successively in CHARMm to evaluate the lowest
energy conformation.

Energy function In order to screen the conformational space
with high speed and relatively high accuracy, a simplified
energy function is exploited. Since the bond lengths and bond
angles are constant, the total energy E only consists of two
parts, the soft-sphere van der Waals non-bonded energy Es
and the harmonic constrained energy Eh. The Es Eh are given
below (see Equation 1 and 2):
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Here, ks and kh are force constants for soft-sphere van der
Waals non-bonded energy and harmonic constrained energy.

d0 and d represent the sum of van der Waals radii of a pair of
atoms and the distance between these atoms respectively. The
r(X)s are the position vectors of the dummy atoms and their
reference atoms are illustrated in Figure 1b.

Grid-mapping In order to speed up computing further, a
grid-mapping method is developed to accelerate the calcula-
tion of the environmental interactions. For a loop atom lo-
cated in a defined space, since all the environmental atoms
are fixed during the simulation, its nearby non-loop part within
the cutoff distance of non-bonded energy is also constant,
therefore this non-loop part can be calculated before the simu-
lation. As adopted in this method, a cube that contains the
van der Waals volume of the whole fixed protein part is gen-
erated initially, then it is divided into more small cubes with
a certain grid size such as 1Å. The non-loop atoms are mapped
onto each small cube next, if they will possibly clash with a
certain cube, they are recorded in a special array. Therefore,
each cube is related with some environmental atoms. When
calculating the energy between the loop atom and the protein
framework, we can determine the non-bonded atom pairs
quickly by ascertaining which cube the loop atom is located
in instead of calculating numerous atom-distances. Because
the calculation of non-bonded interactions between modelled
loop atoms and the protein environmental atoms makes up a
remarkable portion of the total energy calculation, the grid-
mapping algorithm reduces the computation dramatically. For
example, the protein BPTI has 454 atoms, when it is divided
into 1.0 Å grids, each grid will only interact with 24 atoms
[7]. Thus it will reduce almost 95% of the calculation of atom-
distances and raise the computational speed about one order
of magnitude.

Figure 2 The distribution of CHARMm energies and
RMSDs of clusters of the loop 5icb_15_8. Only the clusters
with more than nine candidates are shown in the figure. Each
candidate is plotted as a point; (a) The energy is calculated

by 400 steps of SD minimisation after MCSA simulation; (b)
The RMSD is of the loop backbone heavy atoms between the
calculated structure and the crystal structure

(a) (b)
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Significant improvements on previous work

In this work, we keep the framework of the previous program
and most of the settings of parameters. In addition, we also
pay great attention to the efficiency and the rationality of the
method to avoid some unnecessary and unreasonable factors.
Especially in the simulation part some significant enhance-
ments have been made.

Split-connect procedure for smooth closure of the mod-
elled loop In the first step of simulation, when the modelled
loop is built up in an extended conformation, with the stand-
ard bond lengths and bond angles adopted in CHARMm, it is
split into two parts down the middle. Then two dummy at-
oms N’ and CA’, which are the copies of the N and CA atoms
of the first residue in the second half of the loop, are attached
to the C-terminus of the first half loop. These two dummy
atoms will be used for calculation of the harmonic energy to
ensure the smooth loop closure in simulation. After that, these
two loop segments are connected to the corresponding posi-
tions of the protein framework respectively (see Figure 1c).
This procedure is a great enhancement on the original one.
In this simulation, when the loop is long, it is too free to
draw back to the protein framework, even if it is forced to
connect to the protein bulk, the dihedral angles especially
the φn+1 dihedral of the last residue of loop C-terminus are
often distorted. The new method, by cutting the long loop
into two short ones, can easily control the closure of loop.
This will speed up the computational convergence and make
the conformation more reasonable.

Reasonable generation of new candidatesIn the current
work, the new conformations of the modelled loop are still
produced by changing one of the φ , ψ dihedrals of the back-
bone or one of the four χ dihedrals of the side chain at a
random degree. Also all of the bond lengths and the bond
angles are fixed at the initial values and ω dihedrals of back-
bone are kept at 180°. However, the rotating degrees of back-
bone dihedrals are not set completely randomly as before.
For the non-glycine and non-proline residues, when the ψ
dihedral is chosen to be rotated, an arbitrary degree is used.
While the φ dihedral is involved, the program will select a
reasonable value from, at most 10, random ones so that the
pair of φ and ψ values would be located in favourable regions
in the Ramachandran map with higher probability. The φ di-
hedrals of prolines are tolerated within ±20° deviation around
–75°. This adjustment will ensure the conformations’ ration-
ality.

Average Linkage Cluster Analysis (ALCA) As a stochastic
method, MCSA has a potential defect that is it cannot find
out how much computation will be sufficient to cover most
of the conformational space and obtain a favourable result.
In order to overcome this problem, the average linkage clus-
ter analysis (ALCA) is introduced in this work instead of an
arbitrary number such as 100 times used previously by our

method. When the MCSA begins to work, n (here n=20) con-
formational candidates of the modelled loop are generated
with different random seeds. Then a matrix composed of the
root mean square deviations (RMSDs) between each pair of
these conformations is calculated, and an Average Linkage
Cluster Analysis (ALCA) is performed to divide the candi-
dates into different structural classes. When another new it-
eration of MCSA works, n new candidates are produced and
classified by ALCA again. The computation will not be
stopped until new structural classes are no longer developed.
Otherwise, another n simulation and ALCA will be contin-
ued until the structural classes of the last two clustering re-
sults are matched or the maximum simulation number (in
this paper it is 1000) is reached. The ALCA procedure mainly
provides a suitable sampling judgement in conformational
space and will guarantee the sampled candidates to cover the
most accessible region.

The ALCA mainly involves some typical average con-
formations to cluster the candidates. At first, it treats each
candidate as a separate conformational class. Then the RMSDs
of the average conformations between each pair of typical
classes are calculated (see Equation 3). Here RMSDavg is
the RMSD of the typical average conformation of each class.
M and N are conformational classes, i and j are candidates of
M and N classes respectively, CM and CN are numbers of
candidates which belong to M and N classes respectively.
After the average RMSD is compared with a given threshold,
all of the conformational candidates are reformed into new
classes, the classes whose average conformational RMSDs
are less than the threshold are grouped into the same new
class. This procedure will repeat until the classes are con-
verged and unchanged. When new candidates are produced,
they are also treated as new classes separately. Then they are
clustered together with the previous calculated classes. The
threshold for ALCA is set to be 1.0 Å for a four or five-
residue loop, 1.5Å for a six or seven-residue loop and 2.0Å
for all longer loops.

RMSD
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C Cavg

M N

i j

M N

i j

= •

∑
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Some improvements have also been made on other fields,
especially on the Grid-mapping method. Here, we map the
multiple-dimension assay of grid information onto a one-di-
mension assay. This management greatly reduces the occu-
pation of the memory, so that the program can deal with a
much larger protein and a more complex system. It lowers
the demands for computer hardware and raises the computa-
tional speed.  The final step-minimisation includes 400 SD
steps in order to eliminate the acute non-bonded interaction
caused by the coarse energy function. Then the conforma-
tion with lowest energy is further optimised thoroughly to
the reasonable result.
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Results and discussion

Loop selection

Most structure modelling programs perform better in calcu-
lating internal segments or regular secondary structures than
in calculating surface loops. In order to test our program on
more complicated cases, twenty target surface loops that con-
nect different types of secondary structures and have differ-
ent lengths were selected (see Table 1). All of these loops
were chosen from 364 representative protein structures pro-
vided by the FSSP database [10,11] according to the follow-
ing criteria: have crystal structures solved with resolution
better than 2.0Å, have a solvent accessible area more than
30Å2 per residue, and have a single unbroken peptide chain.
The last condition is convenient for CHARMm operation.

Accuracy and efficiency

The computational results of the 20 loops are listed in detail
(see Table 2).

According to the algorithm, the number of necessary simu-
lations depends on the flexibility of the modelled loops, which
can be deduced from the solvent accessible area of the loop.

Therefore, the CPU times in calculating loops of the same
length may vary dramatically. The results of ALCA calcula-
tions can illustrate the conformational variability of each loop
clearly. For example, the solvent accessible area of loop
5icb_15_8 is 665.0 Å2, it takes 420 simulations to converge
at 109 structural clusters. Among the 109 clusters, there are
nine clusters each of which contain at least 10 conformations
and 24 clusters each of which comprise at least five confor-
mations. The other clusters are very small, and 39 clusters
only have one single conformation. Here the energies and
RMSDs of the conformations in the most populated nine clus-
ters of the loop 5icb_8_8 are plotted (see Figure 2). The fig-
ure shows that cluster 7, in which the crystal structure is lo-
cated, consists of many low-energy conformations. The low-
est one is picked out for further minimisation and leads to
the final result (RMSD = 0.34Å, see Figure 3). While in clus-
ter 6, which has a large RMSD, there are few low-energy
conformations. Contrary to loop 5icb_15_8, loop 1dpe_8_8
also has eight residues but a solvent accessible area of 250.0
Å2, it takes only 80 simulations and nine clusters to cover the
conformational space.

A key step is to pick out the near native conformation
from hundreds of candidates. After MCSA-simulation, all the
candidates are minimised by 400 cycles of the SD routine
and sorted according to their CHARMm energy. In fact the
native-like structures can not be distinguished in most cases
(comparing column 5 and column 6 in Table 2) since they do

Table 1 Structural information of the selected target loops in this work

PDBid Loop starting Loop Length Type [a] Resolution (Å) Area [b]  (Å2) Sequence
number

1utg 46 4 αα 1.34 291.0 DSLP
1utg 27 5 αα 1.34 510.0 EFEPD
1poa 101 6 αα 1.50 350.0 AGAPYN
2abk 149 7 αα 1.85 366.0 QFAPGKN
2abk 100 8 αα 1.85 551.0 HNGEVPED
2tgi 29 4 αβ 1.80 457.0 GWKW
2phy 24 5 αβ 1.40 178.0 DGLAF
2rn2 58 6 αβ 1.48 438.0 ALKEHC
1xnb 156 7 αβ 1.49 357.0 HGMNLGS
5icb 15 8 αβ 1.50 665.0 AKEGDPNQ
1frd 22 4 βα 1.70 257.0 EETT
1poa 79 5 βα 1.50 386.0 KGGNN
1mrj 105 6 βα 1.60 218.0 LPYSGN
2rn2 121 7 βα 1.48 538.0 VKGHAGH
1dpe 8 8 βα 2.00 250.0 EGSPEGFN
7rsa 75 4 ββ 1.26 309.0 SYST
1iro 7 5 ββ 1.10 292.0 TVCGY
2phy 97 6 ββ 1.40 589.0 DYQMTP
1xnb 43 7 ββ 1.49 443.0 TTGSPFR
1hyt 105 8 ββ 1.70 474.0 HYSQGYNN

[a] α and β describe the types of anchoring secondary structures of the loop.
[b] The area is the sum of solvent accessible area of each loop residue calculated by DSSP [12].
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not have the lowest energy. However, candidates with the
lowest energy are often located near the native structure. On
the another hand, since the loop often lies on the surface of
protein, its side chains has great flexibility to extend into the
solvent. Therefore the conformation of the side chain is so
difficult to be determined that it often leads to relatively lower
precision, as is the case in our work. When the loop acts as
the active region and associates with other molecules, its side
chain conformation may be fixed in a certain degree. Here
only the RMSDs of the heavy backbone atoms between the
completely minimised conformation with the lowest energy
and the crystal structure are provided (see the last column of
RMSD value in Table 2). The averaged deviations of back-
bone heavy atoms for four to eight-residue-loops are 0.19,
0.27, 0.46, 0.41 and 0.87Å, respectively. The minimised re-
sults show that this method has high reliability in obtaining
satisfactory predicted loop structures. Moreover, we have
compared our results with other methods [1,3,5,6]. Because
the calculated cases are different, we can not compare the
results precisely and directly. Here we adopt the average
RMSD value of backbone heavy atoms as a basic judgement.

Contrasting to the value with 0.6 Å in the Multiple Copy
Sampling method [5], 0.7 Å in the Scaling-Relaxation method
[6], and 1.0 Å in another Monte Carlo Simulated Annealing
method [3], our method has high performance with 0.44 Å.

This program has been compiled and tested on SGI-indy/
indigo2/o2-irix5.2/6.3 and PII-Linux platforms successfully.
All the above calculations are run on the PII-350-Linux sys-
tem, and the averaged CPU time of one single MCSA for the
four, five, six, seven and eight-residue loops are about 7, 9,
15, 18 and 36 seconds, respectively. Therefore, 45 minutes
are enough for a five-residue loop with 300 expected MCSA
cycles, and five hours are sufficient for an eight-residue loop
with 500 simulations. For most cases, the above computa-
tions are able to cover the overall conformational space with
confidence.

Algorithm analysis

In order to analyse the factors affecting the final results, we
made some adjustments to the parameters and settings of the

Table 2 Computational results of the 20 loops

Loop id [a] Simulation [b] Threshold (Å)[c] Classes[d] rmsd (Å)[e] rmsd (Å)[f] rmsd (Å)[g] CPU (s)[h]

1utg_46_4 40 1.0 5 0.34 0.58 0.12 4
1utg_27_5 140 1.0 20 0.47 0.93 0.45 13
1poa_101_6 360 1.5 61 0.51 0.92 0.59 12
2abk_149_7 460 1.5 78 0.61 0.65 0.47 22
2abk_100_8 1000 2.0 183 1.40 1.79 1.33 34
2tgi_29_4 300 1.0 60 0.55 0.55 0.39 11
2phy_24_5 360 1.0 87 0.35 0.70 0.39 8
2rn2_58_6 460 1.5 85 0.79 1.04 0.52 15
1xnb_156_7 380 1.5 75 1.03 1.15 0.39 15
5icb_15_8 420 2.0 109 0.92 0.92 0.34 33
1frd_22_4 100 1.0 5 0.26 0.49 0.09 6
1poa_79_5 380 1.0 141 0.55 0.55 0.12 7
1mrj_105_6 380 1.5 19 0.48 0.82 0.36 14
2rn2_121_7 420 1.5 144 0.52 1.22 0.58 18
1dpe_8_8 80 2.0 9 0.64 0.94 0.62 27
7rsa_75_4 40 1.0 6 0.14 0.31 0.15 5
1iro_7_5 160 1.0 50 0.40 0.54 0.13 6
2phy_97_6 300 1.5 58 0.93 0.93 0.38 20
1xnb_43_7 300 1.5 61 0.63 0.93 0.18 21
1hyt_105_8 320 2.0 56 1.42 1.42 1.20 43

[a] The loop id is composed of PDB id, starting residue
number and length of loop.
[b] The number of MCSA simulations.
[c] The threshold used for ACLA computation in dividing the
simulated loops into structural classes.
[d] The number of final structural classes after the ACLA pro-
cedure.
[e] The lowest RMSD of loop backbone heavy atoms between
the calculated candidates and the crystal structure.

[f] The RMSD of loop backbone heavy atoms between the
result of the lowest CHARMm energy after MCSA simulation
and the crystal structure.
[g] The RMSD of loop backbone heavy atoms between the
result of the lowest CHARMm energy after minimisation and
the crystal structure.
[h] The average CPU time for one single MSCA running on
PII-350-LINUX system.
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simulation system. We especially concentrated on which item
may be potentially improved, the MCSA algorithm or the
energy function.

In this work, only the heavy atoms are calculated in MCSA
procedure. In order to be consistent with the standard
CHARMm topology file, the polar hydrogen atoms are con-
sidered. The adding of H atoms brings more non-bonded in-
teractions, more rotary dihedral angles and consequently ex-
pends more CPU time than the original calculation. However
it does not improve the final results

 Another attempt is to replace the energy function with a
more ideal one, the RMSD between the calculated confor-
mation of the loop and the crystal structure in PDB. Four
loops, 2abk_100_8, 5icb_15_8, 1dpe_8_8 and 1hyt_105_8
have been tested with the pseudo energy function. The re-
sults show that for each of the four loops, the computations
converged in two cycles of simulation, all the conformational
candidates were located in only one cluster after the ALCA
procedure, and the final RMSDs of the backbone atoms were
0.12 0.26 0.41 and 0.18Å respectively. Although the RMSD
pseudo energy function cannot represent the real situation
because it only has one global energy minimum while there
are many local minima in the real conformational space, it
still indicates that our algorithm performs well with a perfect
energy function.

One advantage of the method is the implementation of
the simplified energy function, which can greatly speed up
the calculation and get reasonable results by an additional
minimisation procedure. Considering the classic complicated

Figure 3 Comparion between the minimised result of the
lowest CHARMm energy and the crystal structure of the
loop 5icb_15_8. The cartoon is the protein framework of 5icb,
the red structure is the final calculated loop conformation,
the blue one is the crystal structure

CHARMm or AMBER force fields often adopted to model
protein structures accurately, the energy function including
the standard 6-12 Lennard-Jones potential and electrostatic
energy has been incorporated into the MCSA-simulation and
tested on the above target loops [12]. However, for the 6-12
Lennard-Jones potential is partially sharp, the simulation will
suffer from many insurmountable high energy points result-
ing from arbitrary rotations of dihedrals, therefore it does not
make obvious improvements on the results and has less power
to explore the loop conformation. In fact, the performance of
the simplified energy function is always comparable to or
better than that of the complicated force field both in the
speed and accuracy.

In general, optimising the energy function and parameters
is not a good and feasible means to improve the method. A
more practical way is to exploit the knowledge derived from
PDB further. In recent years, more extensive studies on pro-
tein loops have been published [13-17], we also carried out a
detailed loop conformational analysis based on all structures
in PDB[18]. The integration of the statistical results into this
program is in progress.
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